Data Science et assurance

Cette formation donne 84 points PPC aux membres qualifiés de l’Institut des Actuaires

Programme de la formation

Introduction

  • Démystification des mots clés (big data, machine learning, intelligence artificielle)
  • Processus Data Science en assurance
  • Objectifs de machine learning en assurance
  • Processus de la construction d’un algorithme

Pratique en assurance

  • Automatisation des processus de souscription
  • Marketing: conversion, acquisition et rétention
  • Tarification et segmentation tarifaire
  • Analyse des sinistres et prédiction des sinistres graves
  • Détection de fraude
  • Qualité des données
  • Utilisation des données externes (web scraping et open data)

Machine learning

  • Arbre de classification et de régression
  • Gradient boosting
  • Forêt aléatoire
  • Support Vector Machine
  • Régression logistique
  • Réseaux de neurones
  • Détection d’anomalies
  • Analayse en composantes principales
  • K-means

Data Visualisation

  • Tableau de bord
  • Outils de visualisation
  • Exemples de visualisation

 

Une formation de notre expert Kezhan SHI, dont nous vous invitons à découvrir le blog.

Date

28 et 29 mai 2019

Horaires

9h00 - 12h30 et 14h00 - 17h30

Prix
  • 2100 € HT
  • TVA 20%
  • 2520 € TTC
Lieu

CARITAT, 5 rue Tronchet 75008 PARIS

Durée

2 jours

Programme adaptable,
sur-mesure

Notre formateur

Kezhan SHI

Membre certifié de l’IA. Il est titulaire d’un master en actuariat de l’Université Paris Dauphine et a également fait l’École Centrale Paris. Il a travaillé chez Prim’Act, Direct Assurance et Aviva, avant de rejoindre Allianz en 2017, au titre de Data Scientist.

Points clés

À qui s’adresse cette formation ?

Aux actuaires et à toute personne qui travaille avec les données en assurance, en banque et finance.

Pour obtenir quoi ?

Une compréhension sur l’application des algorithmes de machine learning en assurance, pour la tarification, la détection de fraudes, le scoring, etc…

Comment ?

Les apports théoriques sont complétés par des exercices pratiques sous « R » et Rstudio.

Quels sont les prérequis ?

Avoir des bases en assurance.

 

Chaque participant se munira d’un ordinateur portable pour les travaux pratiques.

Points forts

  • Retour d’expériences sur des applications concrètes
  • Manipulation d’une base de données utilisée en assurance
  • Astuces et bonnes pratiques concernant l’utilisation des modèles dans une entreprise d’assurance

Témoignages

  • «Une présentation synthétique, des exercices pratiques avec leur correction. Une bonne pédagogie du formateur. »IP, Actuaire ALM – MALAKOFF MEDERIC
  • «Formation très claire et formateur très compétent. Contenu (présentation + exercices) bien adaptés aux participants. »EG, Directeur adjoint actuariat – COFACE
Inscrivez-vous à notre newsletter

Pour recevoir toutes les dernières informations